Электронная педаль акселератора (ЭПА)

На автомобилях с электронным дроссельным узлом применяется электронная педаль акселератора, которая электрически передает сигнал о положении педали акселератора контроллеру.

 Система управления двигателем ЕВРО-5 Нива Шевроле

Электронная педаль газа располагается на кронштейне под правой ногой водителя.

Система управления двигателем ЕВРО-5 Нива Шевроле

В электронной педали газа используются два датчика положения педали акселератора (ДППА).

ДППА представляют собой резисторы потенциометрического типа, на которые подается питание от контроллера 5 В.

ДППА механически связаны с приводом от рычага педали. Две независимые пружины между рычагом педали и корпусом создают возвратное усилие. Получая аналоговый электрический сигнал от ЭПА, контроллер формирует сигнал для управления положением дроссельной заслонки.

Выходное напряжение ДППА меняется пропорционально нажатию педали акселератора.

При отпущенной педали акселератора сигнал ДППА 1 должен быть в пределах 0,46-0,76 В, сигнал ДППА 2 в пределах 0,23…0,38 В.

При полностью нажатой педали акселератора сигнал ДППА 1 должен быть в пределах 2,80-3,10 В, сигнал ДППА 2 в пределах 1,40-1,55 В.

При любом положении педали акселератора сигнал ДППА 1 должен быть в два раза больше сигнала ДППА 2.

Датчик температуры охлаждающей жидкости (ДТОЖ)

 Система управления двигателем ЕВРО-5 Нива Шевроле

Датчик установлен в потоке охлаждающей жидкости двигателя, на патрубке отводящем водяной рубашки двигателя.

Чувствительным элементом датчика температуры охлаждающей жидкости является термистор, т. е. резистор, электрическое сопротивление которого изменяется в зависимости от температуры.

Высокая температура вызывает низкое сопротивление, а низкая температура охлаждающей жидкости - высокое сопротивление.

Контроллер выдает в цепь датчика температуры охлаждающей жидкости напряжение 5 В.

 Система управления двигателем ЕВРО-5 Нива Шевроле

Датчик детонации (ДД)

установлен на блоке цилиндров.

 Система управления двигателем ЕВРО-5 Нива Шевроле

Пьезокерамический чувствительный элемент ДД генерирует сигнал напряжения переменного тока, амплитуда и частота которого соответствуют параметрам вибраций двигателя.

При возникновении детонации амплитуда вибраций определенной частоты повышается. Контроллер при этом корректирует угол опережения зажигания для гашения детонации.

Управляющий датчик кислорода (УДК)

 Система управления двигателем ЕВРО-5 Нива Шевроле

Наиболее эффективное снижение токсичности отработавших газов бензиновых двигателей достигается при массовом соотношении воздуха и топлива в смеси (14,5-14,6) : 1. Данное соотношение называется стехиометрическим. При этом составе топливовоздушной смеси каталитический нейтрализатор наиболее эффективно снижает количество углеводородов, окиси углерода и окислов азота, выбрасываемых с отработавшими газами.

Для оптимизации состава отработавших газов с целью достижения наибольшей эффективности работы нейтрализатора применяется управление топливоподачей по замкнутому контуру с обратной связью по наличию кислорода в отработавших газах.

Контроллер рассчитывает длительность импульса впрыска по таким параметрам, как массовый расход воздуха, частота вращения коленчатого вала, температура охлаждающей жидкости и т.д. Для корректировки расчетов длительности импульса впрыска используется информация о наличии кислорода в отработавших газах, которую выдает датчик кислорода

УДК устанавливается на трубе системы выпуска. Его чувствительный элемент находится в потоке отработавших газов. УДК генерирует напряжение, изменяющееся в диапазоне 50-900 мВ. Это выходное напряжение зависит от наличия или отсутствия кислорода в отработавших газах и от температуры чувствительного элемента УДК.

Когда УДК находится в холодном состоянии, выходной сигнал датчика отсутствует, поскольку в этом состоянии его внутреннее электрическое сопротивление очень высокое - несколько МОм. По мере прогрева датчика сопротивление падает и появляется способность генерировать выходной сигнал.

Для эффективной работы УДК должен иметь температуру не ниже 300°С.

Для быстрого прогрева после запуска двигателя УДК снабжен внутренним электрическим подогревающим элементом, которым управляет контроллер. Коэффициент заполнения импульсных сигналов управления нагревателем (отношение длительности включенного состояния к периоду следования импульсов) зависит от температуры УДК и режима работы двигателя.

Если температура датчика выше 300° С, то в момент перехода через точку стехиометрии, выходной сигнал датчика переключается между низким уровнем (50-200 мВ) и высоким (700...900 мВ).

Низкий уровень сигнала соответствует бедной смеси (наличие кислорода), высокий - богатой (отсутствует кислород).

Описание работы цепи

Контроллер выдает в цепь УДК стабильное опорное напряжение 1,6 В. Когда УДК не прогрет, напряжение выходного сигнала датчика находится в диапазоне 1,2…1,6 В. По мере прогрева датчика его внутреннее сопротивление уменьшается, и он начинает генерировать меняющееся напряжение, выходящее за пределы этого диапазона. По изменению напряжения контроллер определяет, что УДК прогрелся, и его выходной сигнал может быть использован для управления топливоподачей в режиме замкнутого контура.

При нормальной работе системы подачи топлива в режиме замкнутого контура выходное напряжение УДК изменяется между низким и высоким уровнями.

Отравление датчика кислорода

УДК может быть отравлен в результате применения этилированного бензина или использования при сборке вулканизирующихся при комнатной температуре герметиков, содержащих в большом количестве силикон (соединения кремния) с высокой летучестью.

Испарения силикона могут попасть в систему вентиляции картера и присутствовать при процессе сгорания. Присутствие соединений свинца или кремния в отработавших газах может привести к выходу УДК из строя.

Неисправности цепей УДК, дефект датчика, его отравление или непрогретое состояние могут вызвать длительное нахождение напряжения сигнала в диапазоне 1,2…1,6 В. При этом в память контроллера занесется соответствующий код неисправности.

Управление топливоподачей будет осуществляться по разомкнутому контуру.

Если контроллер получает сигнал с напряжением, свидетельствующим о длительном состоянии обедненности смеси, в его память заносится соответствующий код неисправности (низкий уровень сигнала датчика кислорода).

Причиной неисправности может быть замыкание выходной цепи УДК на "массу", негерметичность системы впуска воздуха или пониженное давление топлива.

Если контроллер получает сигнал с напряжением, свидетельствующим о длительном состоянии обогащенности смеси, в его память заносит- ся соответствующий код неисправности (высокий уровень сигнала датчика кислорода). Причиной неисправности может быть замыкание выходной цепи УДК на источник напряжения или повышенное давление топлива в рампе форсунок.

При возникновении кодов неисправности датчика кислорода контроллер осуществляет управление топливоподачей в режиме разомкнутого контура.

Техническое обслуживание датчика кислорода

При повреждениях жгута, колодки или штекеров датчика кислорода, ДК необходимо заменить. Ремонт жгута, колодки или штекеров не допускается. Для нормальной работы ДК должен сообщаться с атмосферным воздухом. Сообщение с атмосферным воздухом обеспечивается воздушными зазорами проводов датчика. Попытка отремонтировать провода, колодки или штекеры может привести к нарушению сообщения с атмосферным воздухом и ухудшению работы ДК.

При обслуживании ДК необходимо соблюдать следующие требования:

Не допускается попадание жидкости для чистки контактов или других материалов на датчик или колодки жгутов. Эти материалы могут попасть в ДК и вызвать нарушение работы. Кроме того, не допускаются повреждения изоляции проводов, приводящие к их оголению.

Запрещается сильно сгибать или перекручивать жгут ДК и присоединяемый к нему жгут проводов системы впрыска. Это может нарушить поступление атмосферного воздуха в ДК.

Для исключения неисправности в результате попадания воды необходимо не допускать повреждений уплотнения на периферии колодки жгута системы управления.